Mixed order elliptic problems driven by a singularity, a Choquard type term and a discontinuous power nonlinearity with critical variable exponents

نویسندگان

چکیده

We prove the existence of solutions for following critical Choquard type problem with a variable-order fractional Laplacian and variable singular exponent $$\begin{aligned} \begin{aligned} a(-\varDelta )^{s(\cdot )}u+b(-\varDelta )u&=\lambda |u|^{-\gamma (x)-1}u+\left( \int _{\varOmega }\frac{F(y,u(y))}{|x-y| ^{\mu (x,y)}}dy\right) f(x,u)\\&+\eta H(u-\alpha )|u|^{r(x)-2}u,~\text {in}~\varOmega ,\\ u&=0,~\text {in}~{\mathbb {R}}^N\setminus \varOmega . \end{aligned} \end{aligned}$$ where $$a(-\varDelta )}+b(-\varDelta )$$ is mixed operator order $$s(\cdot ):{\mathbb {R}}^{2N}\rightarrow (0,1)$$ , $$a, b\ge 0$$ $$a+b>0$$ H Heaviside function (i.e., $$H(t)=0$$ if $$t\le $$H(t) = 1$$ $$t>0),$$ $$\varOmega \subset {\mathbb {R}}^N$$ bounded domain, $$N\ge 2$$ $$\lambda >0$$ $$0<\gamma ^{-}=\underset{x\in \bar{\varOmega }}{\inf }\{\gamma (x)\}\le \gamma (x)\le ^+ =\underset{x\in }}{\sup (x)\}<1$$ $$\mu $$ continuous parameter, F primitive suitable f. The r(x) can be equal to $$2_{s}^*(x)=\frac{2N}{N-2\bar{s}(x)}$$ $$\bar{s}(x)=s(x,x)$$ some $$x\in },$$ $$\eta positive parameter. also show that as $$\alpha \rightarrow 0^+$$ corresponding solution converges above =0$$

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasilinear Elliptic Problems with Critical Exponents and Discontinuous Nonlinearities

Using a recent fixed point theorem in ordered Banach spaces by S. Carl and S. Heikkilä, we study the existence of weak solutions to nonlinear elliptic problems −diva(x,∇u) = f (x,u) in a bounded domain Ω ⊂ Rn with Dirichlet boundary condition. In particular, we prove that for some suitable function g , which may be discontinuous, and δ small enough, the p -Laplace equation −div(|∇u|p−2∇u) = |u|...

متن کامل

A Particle Swarm Optimization Algorithm for Mixed-Variable Nonlinear Problems

Many engineering design problems involve a combination of both continuous anddiscrete variables. However, the number of studies scarcely exceeds a few on mixed-variableproblems. In this research Particle Swarm Optimization (PSO) algorithm is employed to solve mixedvariablenonlinear problems. PSO is an efficient method of dealing with nonlinear and non-convexoptimization problems. In this paper,...

متن کامل

Elliptic problems with critical exponents and Hardy potentials

This paper is devoted to the existence of positive solutions of a Dirichlet problem with critical exponent and a singular potential. Under various assumption on the domain O; which include some kinds of unbounded domains, we prove the existence of ground states and of symmetric solutions. r 2002 Elsevier Science (USA). All rights reserved.

متن کامل

Numerical Study of Mixed Convection in a Lid-Driven Enclosure with a Centered Body Using Nanofluid Variable Properties

In the present study, mixed convection laminar flow around an adiabatic body in a Lid-driven enclosure filled with nanofluid using variable thermal conductivity and variable viscosity is numerically investigated. The fluid around the body in the enclosure is a water- based nanofluid containing Al2O3 nanoparticles. The Vertical enclosure’s walls are maintained at constant cold temperature an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractional Calculus and Applied Analysis

سال: 2022

ISSN: ['1311-0454', '1314-2224']

DOI: https://doi.org/10.1007/s13540-022-00105-4